



# Traffic Management for Connected and Automated Driving (TM4CAD)

#### **Vehicle Manufacturers Perspective Workshop**

Tom Alkim, Strategic Advisor Connected & Automated Mobility – MAPtm 10 June 2022, Aachen











# Agenda

| 08:30 | Walk in coffee                                                                                                                                          |                                 |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 09:00 | Welcome, introduction to TM4CAD and research questions                                                                                                  | Jaap Vreeswijk +<br>Tom Alkim   |
| 09:15 | Basic concepts and terminology associated with ODD definition +<br>Distributed ODD Awareness (DOA) framework                                            | Siddartha Khastgir              |
| 09:40 | Interactive part 1: how do OEMs understand the DOA framework?                                                                                           | Sven Maerivoet                  |
| 10:40 | 30-min coffee break                                                                                                                                     |                                 |
| 11:10 | What kind of roadside or other road operator information do automated<br>driving systems likely need?                                                   | Luisa Andreone +<br>Aria Etemad |
| 11:40 | Prioritisation of information needs                                                                                                                     | Risto Kulmala                   |
| 12:00 | Interactive part 2: what information types and attributes should be prioritized for supporting automated driving and what role can road operators play? | Risto Kulmala                   |
| 12:55 | Conclusions                                                                                                                                             | Jaap Vreeswijk +<br>Tom Alkim   |
| 13:00 | Lunch                                                                                                                                                   |                                 |





# Consortium

- MAP traffic management (the Netherlands)
- Traficon (Finland)
- Transport & Mobility Leuven (Belgium)
- WMG, University of Warwick (UK)
- Steve Shladover (US independent)
- Hironao Kawashima (Japan Keio University)

















## Connected, Cooperative & Automated Mobility (CCAM)

**CCAM** has the potential to make transport:

- Safer: bring down the number of road fatalities and accidents
- Greener: help to reduce harmful emissions from transport by smoothening traffic flow and avoiding unnecessary trips
- More accessible: ensure inclusive mobility access for all

# If it's done "right"!





## Connected, Cooperative & Automated Mobility (CCAM)

However, a number of challenges have to be addressed:

- Key technologies still being developed (need to be safe, tested, validated)
- The right legal framework has to be set up (adopted at MS and EU-level)
- CAVs will have to be integrated into the broader transport system and interact with other forms of mobility
- Acceptance and trust in CCAM technology and services, by users and society, has to be nurtured every step of the way





# About TM4CAD – Expected results

- The project is funded by CEDR Call 2020 Impact of CAD on Safe Smart Roads
- Start: 13 September 2021 | End: 12 March 2023 (18 months)
- 7 workshops and 4 deliverables
- Identify the full range of ODD attributes for consideration, based on experience from working on ODD issues in standardization activities and in other related research projects;
- Integrate the very different perspectives of the CAD vehicle system developers and the road authorities and operators to focus on the areas of intersection between them;
- Introduce the concept of **ODD** attribute awareness and the role of infrastructure in it;
- Develop recommendations based on understanding the technical constraints on the ODD-relevant information that can be perceived and exchanged in real time by the NRAs and the sensing systems on the CAD-equipped vehicles;
- Provide insights on how to support CAD operation and ODD management, and how ISAD should be refined for traffic management use, and
- Detail how traffic management systems and CAD vehicles can best interact to improve traffic operations.





# Traffic Management for CAVs

- To what extent is Traffic Management different for CAVs?
- Sending information to humans driving vehicles or vehicles being driven by software requires a different approach
- How is information being interpreted? What level of context awareness?
- Mixed traffic conditions add complexity
- Define appropriate driving behaviour and response of CAVs
- Related to specific Operational Design Domains (ODD)



### **Operational Design Domain (ODD) framework**

#### STORYLINE ODD FRAMEWORK

destination.

2

3

4

5

#### Criver leaves home to drive to work. First mile is driven manually. \_\_\_\_\_ gives control to vehicle (ToC) and continues the trip in always & all conditions automated mode. Does something else with the freed up Sme, like reading email, posting on instagram or drinking collee. Vahicle approaches the exit and driver preparet to take back control (ToC) and drives last mile manually to first mile highway last mile 5AE (1365





limited ODD

all'

New Collectory

Marine Markadaminet

### ODD framework infrastructure – traffic - weather

#### STORYLINE ODD FRAMEWORK

#### A.

Oriver leaves home to drive to work. First, mile is driven manually.

#### .

... gives control to vehicle (TsC) and continues the bip in automated mode. Does something else with the freed up Sma, late reading email, posting on instagram or drinking coffee.

#### C3

During the trip vehicle encounters temporary lane markings, whicle is confused and ODD ends. Driver needs to lake ever control (TeC).

#### DS.

Conditions back to normal, ODD is available again, driver gives back control (ToC).

#### cz :

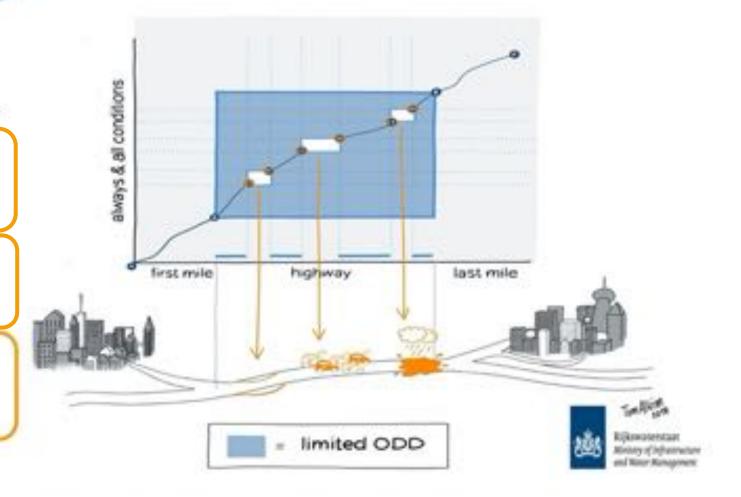
During the big vehicle has to marge in heavy mixed traffic, vehicle can't handle the situation and ODD ends. Driver needs to take over-control (TeiC).

#### 64

Conditions back to normal, 000 is available again, driver gives back control (ToC).

#### 03

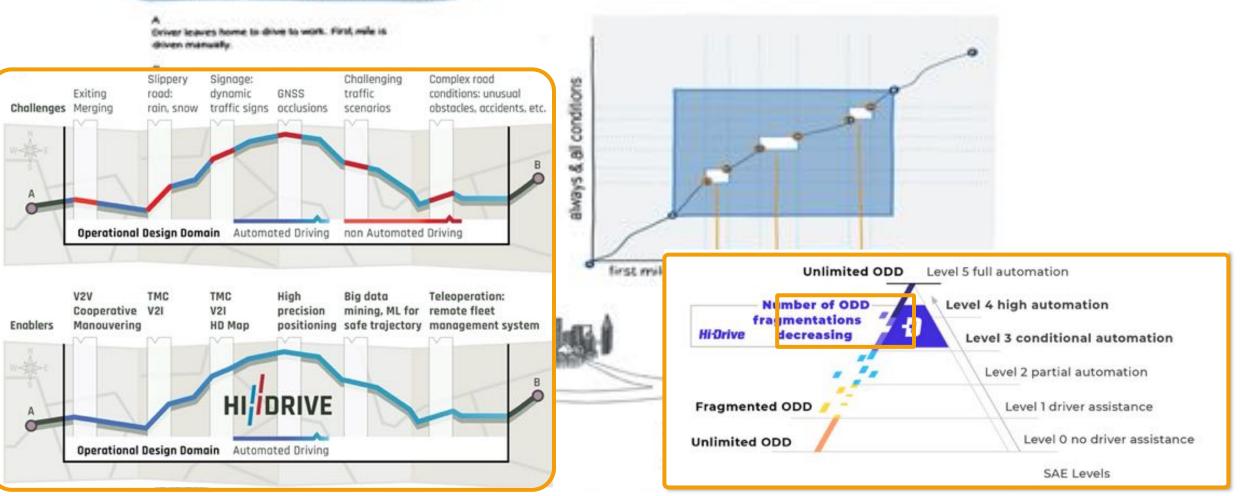
During the bip a heavy rain shower occurs, vehicle can't handle bie situation and ODD ends. Driver needs to lake overcantrol (Tri-C).


#### **D**3

Conditions back to normal, ODD is available again, driver gives back control (TeC).

#### 8

Vanicle approaches the exit and driver preparet to take back control (ToC) and drives last mile manually to destination.








## ODD framework infrastructure – traffic - weather

#### STORYLINE ODD FRAMEWORK







# Workshop objectives

- Understand basic concepts and define common terminology associated with ODD definition and present Distributed ODD Awareness (DOA) concept including the relationship to ISAD
- "Determination of the information needs and who is to provide this information in the bidirectional interaction between TMC and vehicle"
- "Definition of the roles and responsibilities in the interaction between OEMs/Service Providers and NRAs on operational level".
- Discuss the presented concepts and ask the OEMs what kind of information they would find most useful to help their ADS determine (in real time) whether the roadway segment they are approaching will be suitable for ADS driving









# Traffic Management for Connected and Automated Driving (TM4CAD)

#### Basic Concepts and Distributed ODD Awareness (DOA) framework

Siddartha Khastgir















# Traffic Management for Connected and Automated Driving (TM4CAD)

**Interactive part: How do OEMs understand the** 

**Distributed Operational Design Domain Awareness (DOA) framework?** 











# Basic Concepts and Terminology

- Levels of automation
- Operational Design Domain (ODD)
- Importance of ODD and real-time ODD awareness
- Examples of needed ODD attributes



6/10/22



# Levels of Automation – SAE J3016/ISO PAS 22736

Distinguishing roles of human driver and driving automation technology

- Level 0 Human performs entire dynamic driving task (DDT)
- Driving assistance systems:
  - Level 1 System performs <u>either</u> lateral <u>or</u> longitudinal vehicle motion control (ACC or lane tracking)
  - Level 2 System performs <u>both</u> lateral <u>and</u> longitudinal vehicle motion control under continuous driver supervision (many current products)
- Automated Driving Systems (ADS):
  - Level 3 System performs entire DDT under specified ODD conditions, but driver must be available to intervene when requested by system
  - Level 4 System performs entire DDT under specified ODD conditions, and can achieve minimal risk condition without human intervention
  - Level 5 System can drive under all conditions that human can (dream)





# Levels of Automation – SAE J3016/ISO PAS 22736

Distinguishing roles of human driver and driving automation technology

- Level 0 Human performs entire dynamic driving task (DDT)
- Driving assistance systems:
  - Level 1 System performs <u>either</u> lateral <u>or</u> longitudinal vehicle motion control (ACC or lane tracking)
  - Level 2 System performs <u>both</u> lateral <u>and</u> longitudinal vehicle motion control under continuous driver supervision (many current products)
- Automated Driving Systems (ADS):
  - Level 3 System performs entire DDT under specified ODD conditions, but driver must be available to intervene when requested by system
  - Level 4 System performs entire DDT under specified ODD conditions, and can achieve minimal risk condition without human intervention
  - Level 5 System can drive under all conditions that human can (dream)





# Operational Design Domain (ODD)



6/10/22



# Operational Design Domain (ODD)

"Operating conditions under which a given driving automation system or feature thereof is specifically designed to function, including, but not limited to, environmental, geographical, and time-of-day restrictions, and/or the requisite presence or absence of certain traffic or roadway characteristics."

- SAE J3016 (2021)





# Understanding ODD: standardization galore!

- Need for common understanding
- Crowded landscape

Major activities:

- BSI (UK): PAS 1883
- ISO: ISO 34503 (TC22 SC33 WG9)
- ASAM: OPENODD
- SAE: ORAD, AVSC
- UL: 4600

6/10/22

- IEEE: P2843
- UNECE: WP29





# Importance of ODD

- At least as important as level of automation
- Defined by each CAD system developer based on their design constraints, not by any other entity
- Different for every CAD system, based on limitations of its technology
- To ensure safe operations, each CAD system must remain within its ODD constraints:
  - If ODD constraints are violated, cease automated driving
  - (Level 3) request driver to intervene
  - (Level 4) automatically transition to minimal risk condition (safe stop)





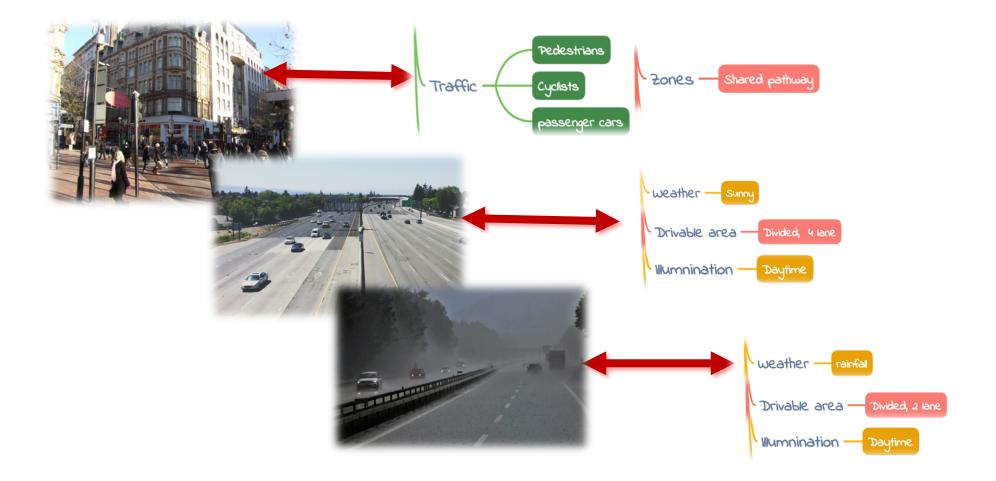
# Need for real-time ODD awareness

- CAD system continuously monitors ODD attributes where it is operating to determine whether it can continue to operate
  - Safety cases and regulations should prohibit operations when ODD constraints are violated
- Anticipate impending ODD constraint violations to allow time for graceful transition to driver control (Level 3) or to minimal risk condition (Level 4)
- Infrastructure cooperation needed for information about attributes that CAD vehicle sensors cannot detect directly, such as:
  - Traffic incidents obstructing lanes beyond line of sight
  - Fog obstructing visibility beyond line of sight
  - Planned road works
  - Freezing pavement causing black ice



# **ODD** Attribute Categories

- Physical attributes of the roadway and its environs
  - Quasi-static physical infrastructure
  - Road surface conditions that vary with weather conditions
- Operational attributes of the roadway (traffic management services available, traffic conditions)
- Digital information support for CAD operations
- Ambient environment attributes (weather, visibility, electromagnetic)


(These will need updates on different time scales)

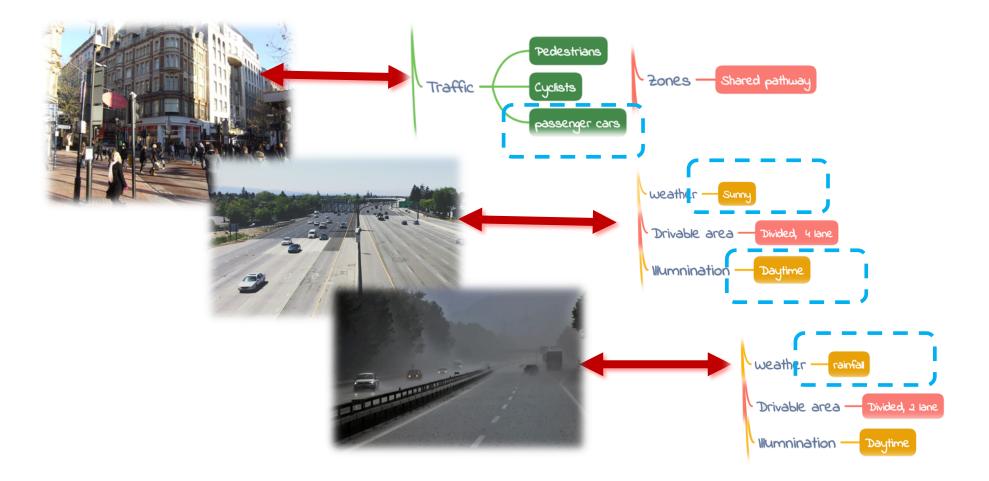


6/10/22



## **ODD** Awareness






6/10/22

CEDR Call 2020: Impact of CAD on Safe Smart Roads



## **ODD** Awareness





6/10/22

CEDR Call 2020: Impact of CAD on Safe Smart Roads



### ODD Awareness - Rainfall

- What does rainfall rate mean?
- How do we measure rainfall rate?
- How do we address local variability issues?
- Can the CAD system measure it via on-board sensing only?



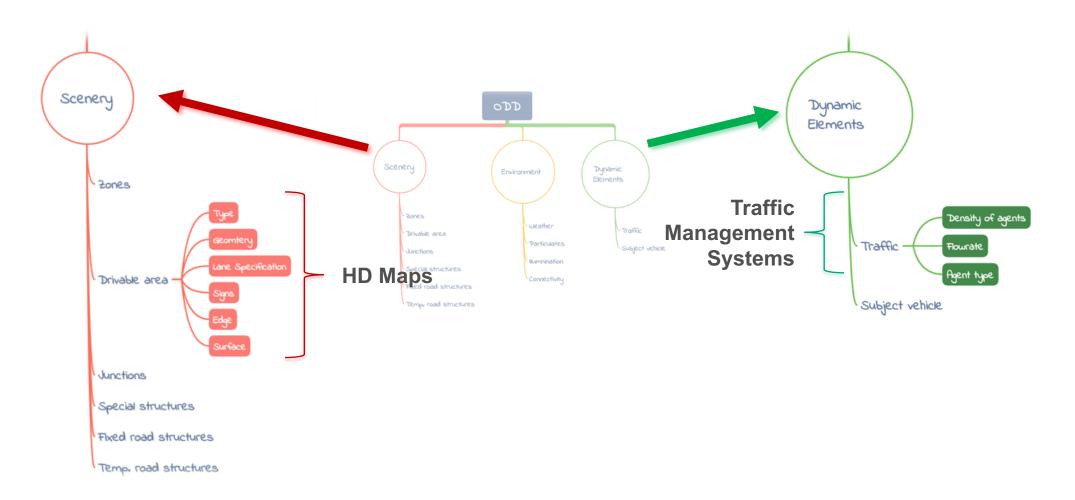


6/10/22



### **Distributed** ODD Awareness - Rainfall

- What does rainfall rate mean?
- How do we measure rainfall rate?
- How do we address local variability issues?
- Can the CAD system measure it via on-board sensing only?



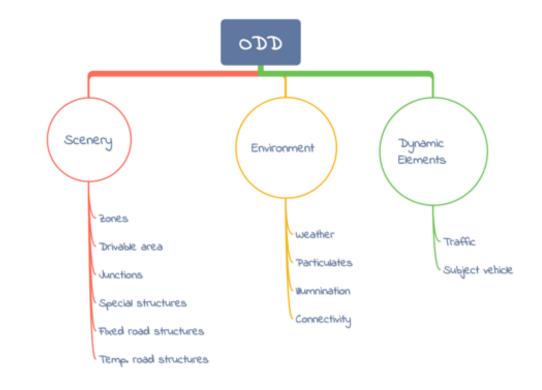



6/10/22



## Distributed ODD Awareness






CEDR Call 2020: Impact of CAD on Safe Smart Roads



### Distributed ODD Awareness

• Any ODD attribute can be measured via off-board sensing





6/10/22

TRAFFIC MANAGEMENT





## Distributed ODD Awareness

- Any ODD attribute can be measured via off-board sensing
- Every ODD attribute doesn't need to be measured via off-board sensing
- Off-board measurements will require infrastructure investment
- Connectivity implicitly becomes a requirement







## Understanding information criticality

Criticality of information refresh rate will impact infrastructure investment & connectivity requirements:

- Category 1: Changes very seldom (e.g. road layout, intersections etc.)
- Category 2: Changes every (few) days (e.g. vegetation growth)
- Category 3: Changes every (few) hours (e.g. wet road surface)
- Category 4: Changes every (few) minutes (e.g. variable message signs)
- Category 5: Changes every (few) seconds

6/10/22





### What is ALKS?

- Automated Lane Keeping System (ALKS) UN Regulation 157
- ALKS controls the lateral and longitudinal movement of the vehicle for extended periods without further driver command.
- ALKS can be activated under certain conditions
- Regulation limits the operational speed to 60 km/h maximum and passenger cars (M1 vehicles).



Source: ECE/TRANS/WP.29/2020/81





### What is ALKS?

The Type-approval authority shall assess the documentation package to show that "The System":

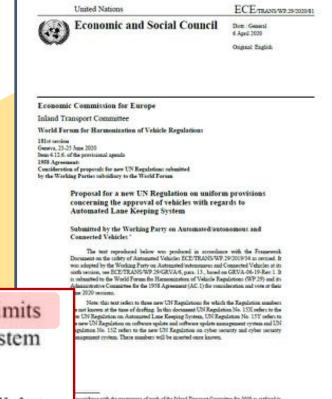
- Is designed and was developed to operate in such a way that it is free from unreasonable risks for the driver, passengers and other road users within the declared ODD and boundaries;
- (b) Respects, under the performance requirements specified elsewhere in this UN Regulation;
- (c) Was developed according to the development process/method declared by the manufacturer and that this includes at least the steps listed in paragraph 3.4.4.

Source: ECE/TRANS/WP.29/2020/81

| Economic and Social Council                                                                                                                                                                                                                                                                                                                                                                                                                         | ECE/TRACKS WF 29 2020                                                                                     |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|
| (2) Economic and Social Council                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 April 2020                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Original English                                                                                          |  |
| Francisch Commission for Francis                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                           |  |
| Economic Commission for Europe                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                           |  |
| Inland Transport Committee                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                           |  |
| World Forum for Harmonization of Vehicle Regulations<br>151st section                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                           |  |
| Geneva, 23-25 June 2020                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |  |
| Dem 4.12.6. of the provisional agenda<br>1958 Agreements                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                           |  |
| Consideration of proposals for new UN Regulation: submitted<br>by the Working Parties subsidiary to the World Forum                                                                                                                                                                                                                                                                                                                                 |                                                                                                           |  |
| Proposal for a new UN Regulation on uniform provisions                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                           |  |
| concerning the approval of vehicles with regar                                                                                                                                                                                                                                                                                                                                                                                                      | rds to                                                                                                    |  |
| Automated Lane Keeping System                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                           |  |
| Submitted by the Working Party on Automated/autor<br>Connected Vehicles "                                                                                                                                                                                                                                                                                                                                                                           | bonous and                                                                                                |  |
| The text reproduced below was produced in accordance<br>Document on the today of Antonemic Vehicles ECETRANSWF,<br>was adopted by the Working Firsty on Adventuation streactions and C<br>sinth sension, are ECETRANSWF, SOCIEVAN, gass 13, housing<br>in substitution the Working Fourty on Vehicle Age<br>Admeniation of the Working Fourty on Vehicle Age<br>Admeniative Committee for the 1958 Agreement (AC 1) the commi-<br>lies 500 sension. | 9/2019/34 as sectored. It<br>onsected Vehicles at its<br>GRVA-06-19-Rev.1. It<br>distorts (WP-19) and its |  |
| Note: this test refers to these new UP Exploration for which<br>are not lowers at the tass of darking. In this document UN Explosi-<br>new UN Explosion on a Ratemark Law Exercise Systems, UN Exp<br>the new UN Explosion on software update and order are update<br>man approximation. No. UN evident to the new UN Exploration on a types new<br>management system. These numbers will be incerted once known.                                   | an No. 15% refers to the<br>Janua No. 15Y refers to<br>aparent systems and UN                             |  |
| * In accordance with the programma of work of the Indust Transport Commit-<br>proposed programma budget for 2200 (AVH4 (part V sert 20) pars 0.07)<br>develop, hormouter and update VIC Papelinities in order to maintee the per-<br>grammatic document is subsamed in condimizing onth that mandee.                                                                                                                                                | the World Forum will                                                                                      |  |
| GE.20-45130(E)                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1343                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                           |  |

Source: ECE/TRANS/WP.29/2020/81








What is ALKS?

The Type-approval authority shall assess the documentation package to show that "The System":

- Is designed and was developed to operate in such a way that it is free from unreasonable risks for the driver, passengers and other road users within the declared ODD and boundaries;
- (b) 3.2.3. Limits defining the boundaries of functional operation including ODD-limits shall be stated where appropriate to automated lane keeping system performance.
  - 3.2.4. Interaction concept with the driver when ODD limits are reached shall be explained including the list of types of situations in which the system will generate a transition demand to the driver.



according on the the programmer of work of the label Theory of Committee for 1000 as sortioned in spored programmer barget for 2200 (K/H4 (part V = 200 ) parts 0.21), as the Windt Forum and why, harmonian and update UN7 Regulations in order to extends of the performance of values. The event document is subsymbol UN7 Regulations in order to extends of the performance of values. The event document is subsymbol UN7 Regulations in order to extends of the performance of values. The event document is subsymbol update update update update updates of the subsymbol updates

Source: ECE/TRANS/WP.29/2020/81





#### Is designed and was developed to operate in such a way that it is free (a) from unreasonable risks for the driver, passengers and other road users

3.2.4.

that "The System":

within the declared ODD and boundaries:

Interact

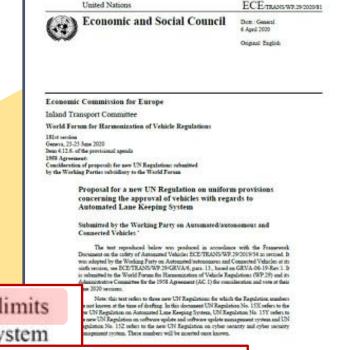
explaine

generate

The Type-approval authority shall assess the documentation package to show

What is ALKS?

(b) 3.2.3. Limits defining the boundaries of functional operation including ODD-limits shall be stated where appropriate to automated lane keeping system perform


> The Type Approval Authorities shall also check a number of scenarios that are critical for the Object and Event Detection and Response (OEDR) and characterization of the decision-making and HMI functions of the system (e.g. object difficult to detect, when the system reaches the ODD boundaries, traffic disturbance scenarios) as defined in the regulation.

Source: ECE/TRANS/WP.29/2020/81

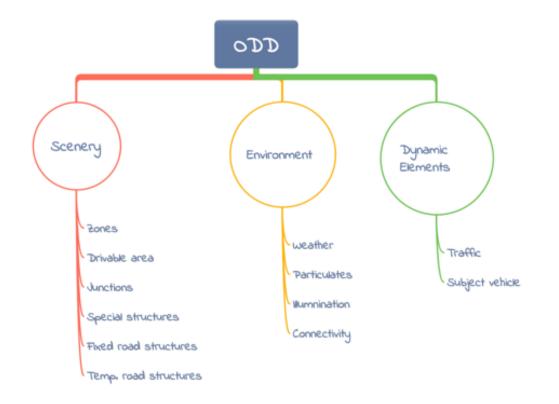


4.1.2.1.





000 as exclused in


and Forum sell on of vehicles. The

B and

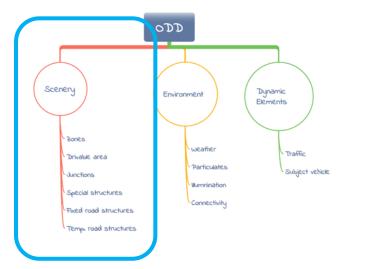
9/2020/81

(c)

### Interplay between ODD and ALKS



ODD Taxonomy as per BSI PAS 1883





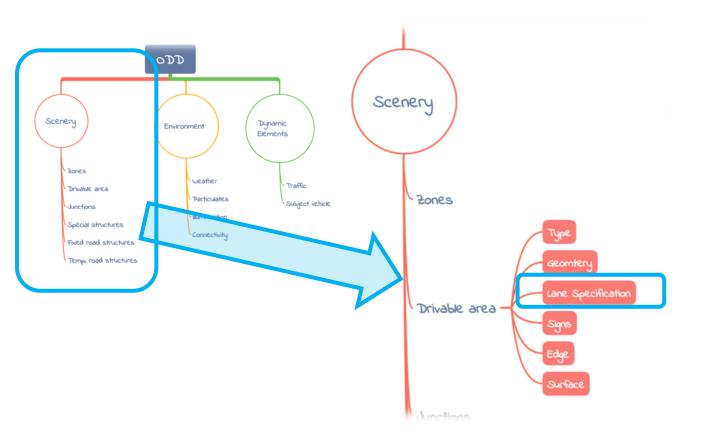

CEDR Call 2020: Impact of CAD on Safe Smart Roads



### Interplay between ODD and ALKS



ODD Taxonomy as per BSI PAS 1883



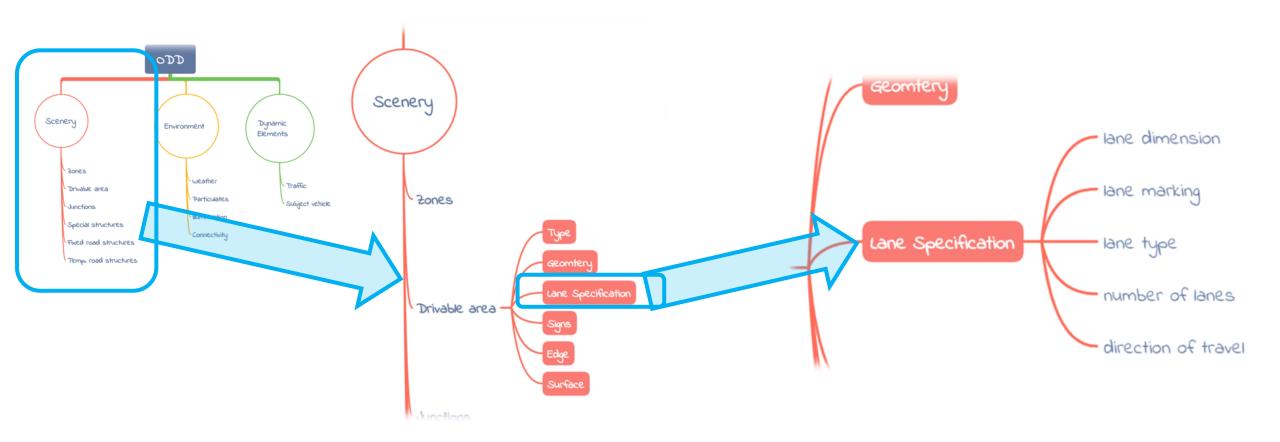



CEDR Call 2020: Impact of CAD on Safe Smart Roads



# Interplay between ODD and ALKS




## ODD Taxonomy as per BSI PAS 1883

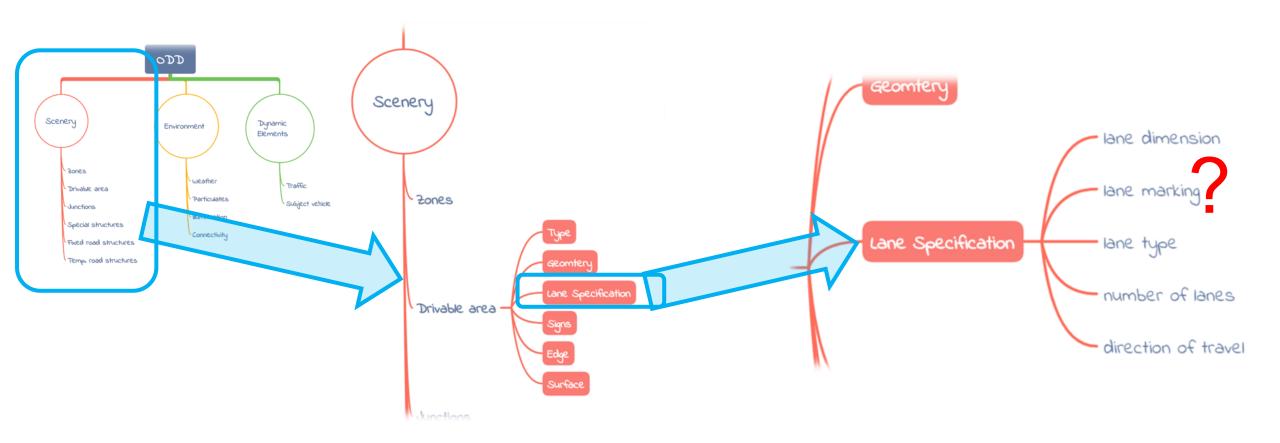






# Interplay between ODD and ALKS




## ODD Taxonomy as per BSI PAS 1883







# Interplay between ODD and ALKS



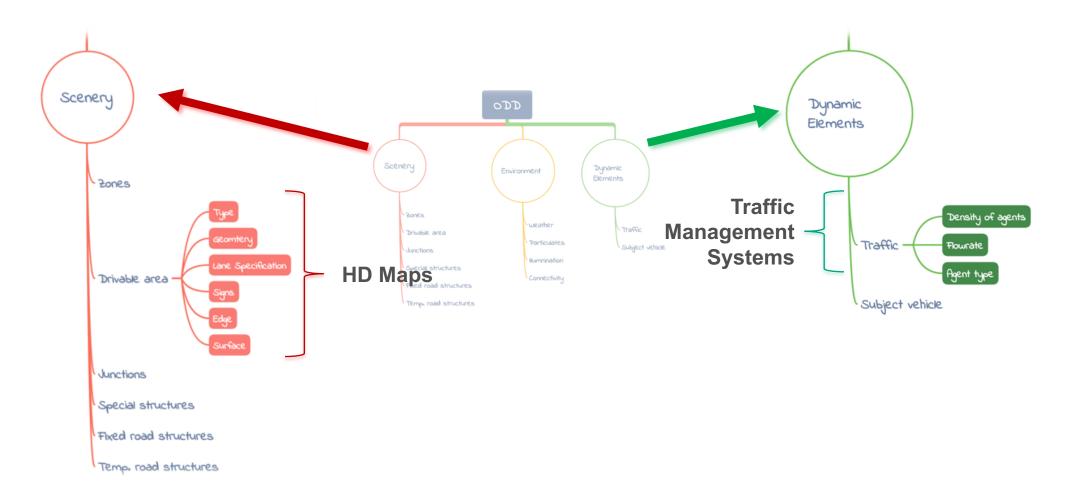
## ODD Taxonomy as per BSI PAS 1883







# Lane markings






6/10/22



# Distributed ODD Awareness







## Things we need to consider...





CEDR Call 2020: Impact of CAD on Safe Smart Roads



6/10/22

# Distributed ODD Awareness: Freedom of Choice

- DOA Framework can be implemented in multiple ways
- OEMs need to decide based on stakeholder needs and required design architectures
- Trade-off between the best setup and the most beneficial setup
- Potentially, use case driven







# General operational design domain (ODD)

- General
  - How do you currently consider the ODD?
  - What role do the ODDs currently have in your developments?
  - Where do you see pitfalls/shortcomings of the ODD definitions?
- ODD fragmentation
  - How would you deal with the fragmentation of an ODD?
  - What role can the exchange of information on local attributes/conditions have here?
  - How do you use technology and AI to help here (e.g., making certain attributes obsolete)?
- Which partners/stakeholders do you see involved







# Distributed ODD Awareness (DOA)

- How do you see information criticality?
  - Relevance and urgency of the information sent/received?
  - Timeliness of the information sent/received?
- How do you see interaction with the infrastructure?
  - One-way ⇔ two-way communications?
  - Interfleet/-brand connectivity?
- Exchange of information with:
  - Road operators?
  - Traffic managers?
  - Maintenance contractors?
- (Weather and traffic information) service providers?
- Mobile network operators
- Land survey agencies (e.g., resp. for GNSS land stations)









# Traffic Management for Connected and Automated Driving (TM4CAD)

## **Prioritisation of information needs**

Risto Kulmala & Ilkka Kotilainen, Traficon











# Why do we want to prioritise?

- Research questions set by CEDR:
  - RQ4: What kind of information is to be transmitted in the interaction (in both directions) between a traffic management centre and vehicle?
  - RQ5: Which information is to be provided by the NRA/roadside and which information can be obtained by the sensors of the moving vehicle itself?
- CEDR expectations on results:
  - Develop recommendations based on understanding the technical constraints on the ODDrelevant information that can be perceived and exchanged in real time by the NRAs and the sensing systems on the CAD-equipped vehicles;
  - Integrate the very different perspectives of the CAD vehicle system developers and the road authorities and operators **to focus on the areas of intersection between them**;





# Use cases/scenarios/actors

- Use cases on motorways/highways:
  - ALKS (L3)
  - Highway autopilot (L4)
  - Automated trucks on open roads (L4)
- In three scenarios:
  - traffic jam dissolving
  - adverse weather
  - static/dynamic roadworks zone
- With regard to three actors:
  - roadworks or (winter) maintenance operator
  - traffic manager
  - automated driving system developer/OEM









# Information Priority Evaluation Method

- Combined for all three use cases as the requirements were very similar
- Separately for
  - Each actor
  - Each scenario
- Overall priority level extracted by qualitative comparison (low-medium-high) between the three actors and scenarios
  - Information need, and
  - Safety criticality
- In addition, we estimated the additional cost to the actor
  - Very crude estimate
    - - possibility cost savings; 0 no costs; + low costs; ++ medium costs; +++ high costs
  - Often the additional cost affected only one or two of the actors





# Information needs

- We started with information needs for each stakeholder
- Seldom differences between scenarios for the same stakeholder
- Often differences between stakeholders

| Scenario                                                                     | т       | raffic Jai       | n           | Adverse weather area |                  | Static/dynamic Roa<br>Work Zone |                            |     |             |
|------------------------------------------------------------------------------|---------|------------------|-------------|----------------------|------------------|---------------------------------|----------------------------|-----|-------------|
|                                                                              | Actor a | nd infor<br>need | mation      | Actor a              | nd infor<br>need | mation                          | Actor and information need |     | mation      |
| Local condition /<br>ODD attribute                                           | MO      | ΤM               | AV<br>(ADS) | WMO                  | ТМ               | AV<br>(ADS)                     | RW<br>or<br>MO             | ΤM  | AV<br>(ADS) |
| Variable message<br>sign contents                                            | ***     | ***              | ***         | -                    | ***              | ***                             | -                          | *** | ***         |
| Locations where<br>V2I/I2V<br>communications<br>are available                | *       | ***              | ***         | *                    | ***              | ***                             | -                          | *** | ***         |
| Locations where<br>GNSS differential<br>correction signals<br>are available  | -       | *                | ***         | ***                  | *                | ***                             | *                          | *   | ***         |
| Locations where<br>GNSS coverage is<br>NOT available now,<br>by GNSS service | -       | *                | ***         | **                   | *                | ***                             | -                          | *   | ***         |





# Examples of desktop analysis results

| Actor                                                       | Roadwo                            | rks or Main<br>Operator | tenance                        | Traffic Manager                   |                    | Automated Vehicle<br>(Automated Driving System)<br>developer |                                   |                              | Overall<br>priority            |          |
|-------------------------------------------------------------|-----------------------------------|-------------------------|--------------------------------|-----------------------------------|--------------------|--------------------------------------------------------------|-----------------------------------|------------------------------|--------------------------------|----------|
|                                                             | Priority                          | evaluation              | criteria                       | Priority                          | evaluation         | criteria                                                     | Priority                          | Priority evaluation criteria |                                | level    |
| Local condition / ODD<br>attribute                          | Information<br>need<br>importance | Safety<br>critical      | Additional<br>work and<br>cost | Information<br>need<br>importance | Safety<br>critical | Additional<br>work and<br>cost                               | Information<br>need<br>importance | Safety<br>critical           | Additional<br>work and<br>cost | Priority |
| Locations of road<br>boundaries                             | -                                 | ***                     | +++                            | ***                               | **                 | +                                                            | ***                               | ***                          | 0                              | HIGH     |
| Zone boundaries                                             | -                                 | ***                     | +++                            | ***                               | **                 | +                                                            | **                                | ***                          | 0                              | HIGH     |
| Roadside landmarks                                          | -                                 | ***                     | +                              | **                                | *                  | ++                                                           | ***                               | * * *                        | 0                              | HIGH     |
| Special-purpose<br>localization references                  | -                                 | -                       | +++                            | *                                 | *                  | +                                                            | *                                 | *                            | 0                              | LOW      |
| Quality of pavement<br>marking visibility                   | -                                 | ***                     | +++                            | *                                 | **                 | ++                                                           | ***                               | ***                          | +                              | HIGH     |
| Load-bearing capacity of<br>roadway or bridge<br>structures | -                                 | ***                     | 0                              | **                                | ***                | +                                                            | **                                | ***                          | 0                              | MEDIUM   |

6/9/22





# Priority survey to ADS developers/OEMs Evaluation Results

- Survey conducted before the workshop
- Responses received: N = 8
- The questionnaire asked about four ODD attribute clusters information priorities for the CAD developers:
  - Physical attributes of the roadway and its environs
  - Operational attributes of the roadway
  - Digital infrastructure support
  - Dynamically varying ambient environmental conditions
- Following slides summarise the results of
  - TM4CAD analysis of the THREE actors and THREE scenarios OVERALL priority
  - Survey responses concerning priorities





Priorities of physical attributes of the roadway and its environs

| Local condition /<br>ODD attribute                          | TM4CAD analysis of<br>overall priority level | ADS dev<br>Survey<br>(n=8) |
|-------------------------------------------------------------|----------------------------------------------|----------------------------|
| Locations of road boundaries                                | HIGH                                         | 7H 1L                      |
| Zone boundaries                                             | HIGH                                         | 6H 2L                      |
| Roadside landmarks                                          | HIGH                                         | 7H 1L                      |
| Special-purpose localization references                     | LOW                                          | 8L                         |
| Quality of pavement marking visibility                      | HIGH                                         | 6H 1M 1L                   |
| Load-bearing capacity of roadway or bridge structures       | MEDIUM                                       | 6M 2L                      |
| Road surface damage                                         | MEDIUM                                       | 2H 5M 1L                   |
| Game fence locations and condition                          | LOW                                          | 8L                         |
| Vegetation obscuring sight angles or visibility of<br>signs | LOW                                          | 1M 7L                      |
| Road geometry constraints                                   | HIGH                                         | 7H 1L                      |
| Road shoulder conditions on both sides                      | HIGH                                         | 5H 2M 1L                   |
| Notifications of locations with occluded visibility         | HIGH                                         | 7H 1L                      |





Priorities of digital infrastructure support

| Local condition /<br>ODD attribute                                               | TM4CAD analysis of overall<br>priority level | ADS dev Survey<br>(n=8) |
|----------------------------------------------------------------------------------|----------------------------------------------|-------------------------|
| Variable message sign contents                                                   | HIGH                                         | 7H 1L                   |
| Locations where V2I/I2V communications are available                             | нібн                                         | 7H 1L                   |
| Locations where GNSS differential correction signals are<br>available            | MEDIUM                                       | 1H 5M 2L                |
| Locations where GNSS coverage is NOT available now, by GNSS service              | MEDIUM                                       | 2H 4M 2L                |
| Electronic toll collection systems and their associated pricing                  | LOW                                          | 1M 7L                   |
| Locations of incidents that represent traffic impediments or<br>safety hazards   | HIGH                                         | 7H 1L                   |
| Emergency vehicle locations and direction/speed of travel of each one            | MEDIUM                                       | 1H 5M 2L                |
| Current average traffic speed and density by lane and road section               | HIGH                                         | 6H 2L                   |
| Current percentage of heavy vehicles in traffic stream, by lane and road section | LOW                                          | 8L                      |
| Special events creating abnormal traffic conditions and their locations          | HIGH                                         | 5H 1M 2L                |
| Temporarily blocked or closed road locations                                     | HIGH                                         | 7H 1L                   |
| Locations with high density of pedestrians                                       | LOW                                          | 1H 2M 5L                |
| Locations with high density of cyclists or users of micro-<br>mobility devices   | LOW                                          | 1H 2M 5L                |
| Highway shoulder locations occupied by vehicles or debris                        | HIGH                                         | 5H 1M 2L                |
| Locations with dynamic traffic access changes                                    | HIGH                                         | 6H 1M 1L                |
| Remote human support                                                             | HIGH                                         | 4H 4L                   |

Priorities of dynamically varying ambient environmental conditions

6/9/22

| Local condition /<br>ODD attribute                                            | TM4CAD analysis of<br>overall priority level | ADS dev Survey<br>(n=8) |
|-------------------------------------------------------------------------------|----------------------------------------------|-------------------------|
| Wind speed range                                                              | MEDIUM                                       | 1H 4M 3L                |
| Visibility range with rain/snow/sleet/hail in visible light spectrum          | HIGH                                         | 7H 1L                   |
| Visibility range with rain/snow/sleet/hail in lidar infrared spectrum         | HIGH                                         | 6H 2L                   |
| Rainfall rate in mm/hr                                                        | HIGH                                         | 6H 2L                   |
| Snowfall rate in qualitative ranges                                           | HIGH                                         | 7H 1L                   |
| Visibility range with other particulate obscurants in visible light spectrum  | HIGH                                         | 7H 1L                   |
| Visibility range with other particulate obscurants in lidar infrared spectrum | нідн                                         | 6H 2L                   |
| Predicted significant changes in key weather attributes                       | нібн                                         | 7H 1L                   |
| Qualitative ambient lighting conditions                                       | LOW                                          | 8L                      |
| Quantitative ambient lighting conditions                                      | MEDIUM                                       | 5M 3L                   |
| Special challenging lighting conditions                                       | MEDIUM                                       | 1H 4M 3L                |
| Electromagnetic interference                                                  | HIGH                                         | 5H 3L                   |
| Wet pavement surface                                                          | HIGH                                         | 4H 1M 3L                |
| Ice on pavement surface                                                       | HIGH                                         | 6H 2L                   |
| Cold pavement surface (potential for ice if wet)                              | HIGH                                         | 5H 3L                   |
| Road surface friction                                                         | HIGH                                         | 4H 1M 3L                |
| Light to moderate snow/slush accumulation on surface                          | HIGH                                         | 6H 2L                   |
| Heavy snow/slush accumulation on surface                                      | HIGH                                         | 6H 2L                   |
| Light to moderate flooding (puddles) on surface                               | HIGH                                         | 5H 1M 2L                |
| Heavy flooding – potentially impassible to low-profile vehicles               | нібн                                         | 6H 2L                   |

Priorities of operational attributes of the roadway

| Local condition /<br>ODD attribute                                                                  | TM4CAD analysis of<br>overall priority level | ADS dev<br>Survey<br>(n=8) |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------|
| Temporary static signs                                                                              | HIGH                                         | 7H 1L                      |
| Maintenance vehicles using portions of carriageway                                                  | нідн                                         | 6H 2L                      |
| Work zones                                                                                          | HIGH                                         | 7H 1L                      |
| Incident recovery events (crash scenes, crime scenes, dropped loads, landslides, avalanches)        | нідн                                         | 6H 2L                      |
| Availability of specific C-ITS information services                                                 | HIGH                                         | 6H 1M 1L                   |
| Availability of real-time merging guidance or assistance at motorway interchanges or entrance ramps | нідн                                         | 7H 1L                      |
| Real-time lane-specific speed limit information availability at specific locations.                 | нідн                                         | 7H 1L                      |
| Obstacles or debris on road surface                                                                 | HIGH                                         | 6H 2L                      |
| Roadside objects that change their locations over time, such as parked vehicles or trash cans       | MEDIUM                                       | 5M 3L                      |
| Routing advisory information                                                                        | MEDIUM                                       | 5M 3L                      |
| Traffic rules and regulations in digital form, updated in real time                                 | нідн                                         | 6H 2L                      |



RAFFIC MANAGEMENT

# What does the survey tell us?

- Mostly good agreement with TM4CAD estimates (always at least half in full agreement)
- Individual variety in responses
  - one respondent regarded for more than 90% of the attributes the priority as Low
  - issues of interpretation?
    - Urban use cases vs highway/motorway use cases
    - Some took into account the role of the road operator (according to written comments)
- Written comments
  - many referred to the difficulties and cost for providing the attribute
  - some questioned the trustworthiness of data
  - Some attributes regarded as more long term (e.g. remote control)





# Next steps

- Discuss results with CEDR members
- Elaborate on quality requirements for each attribute
- Propose technical solutions for data exchange
- Discuss attribute information governance
- Finalise report 08/2022

## Quality criteria for DOA and its attributes

| Geographical coverage                            |
|--------------------------------------------------|
| Availability                                     |
| Performance conditions                           |
| Coverage of data types                           |
| Timeliness (start)                               |
| Refreshment rate                                 |
| Data transfer delay                              |
| Timeliness (update)                              |
| Latency (content side)                           |
| Location accuracy                                |
| Monitoring point density                         |
| Measurement accuracy                             |
| Reporting accuracy                               |
| Error Rate                                       |
| Classification correctness (non-false positives) |
| Event coverage (true positives)                  |
| Missed events (false negatives)                  |
| Report coverage                                  |









# Traffic Management for Connected and Automated Driving (TM4CAD)

Interactive part: what kind of information would YOU find most useful to help the ADS determine (in real time) whether the roadway segment ahead will be suitable for ADS driving











| The most  | Local condition / ODD attributes:<br>Physical infrastructure | TM4CAD analysis<br>of overall priority<br>level |          |
|-----------|--------------------------------------------------------------|-------------------------------------------------|----------|
|           | Locations of road boundaries                                 | HIGH                                            | 7H 1L    |
| important | Zone boundaries                                              | HIGH                                            | 6H 2L    |
| and       | Roadside landmarks                                           | HIGH                                            | 7H 1L    |
| urgent?   | Special-purpose localization references                      | LOW                                             | 8L       |
| uigent:   | Quality of pavement marking visibility                       | HIGH                                            | 6H 1M 1L |
|           | Load-bearing capacity of roadway or bridge structures        | MEDIUM                                          | 6M 2L    |
|           | Road surface damage                                          | MEDIUM                                          | 2H 5M 1L |
|           | Game fence locations and condition                           | LOW                                             | 8L       |
|           | Vegetation obscuring sight angles or visibility of signs     | LOW                                             | 1M 7L    |
|           | Road geometry constraints                                    | HIGH                                            | 7H 1L    |
|           | Road shoulder conditions on both sides                       | HIGH                                            | 5H 2M 1L |
|           | Notifications of locations with occluded visibility          | HIGH                                            | 7H 1L    |
|           |                                                              |                                                 |          |





The most important and urgent?

| Local condition / ODD attribute:<br>digital infrastructure                     | TM4CAD analysis of<br>overall priority level | ADS dev Survey<br>(n=8) |
|--------------------------------------------------------------------------------|----------------------------------------------|-------------------------|
| Variable message sign contents                                                 | HIGH                                         | 7H 1L                   |
| Locations where V2I/I2V communications are available                           | HIGH                                         | 7H 1L                   |
| Locations where GNSS differential correction signals are available             | MEDIUM                                       | 1H 5M 2L                |
| Locations where GNSS coverage is NOT available now,<br>by GNSS service         | MEDIUM                                       | 2H 4M 2L                |
| Electronic toll collection systems and their associated pricing                | LOW                                          | 1M 7L                   |
| Locations of incidents that represent traffic<br>impediments or safety hazards | HIGH                                         | 7H 1L                   |
| Emergency vehicle locations and direction/speed of travel of each one          | MEDIUM                                       | 1H 5M 2L                |
| Current average traffic speed and density by lane and road section             | HIGH                                         | 6H 2L                   |





The most important and urgent?

| Local condition / ODD attribute:<br>digital infrastructure                       | TM4CAD analysis of overall priority level | ADS dev Survey<br>(n=8) |
|----------------------------------------------------------------------------------|-------------------------------------------|-------------------------|
| Current percentage of heavy vehicles in traffic stream, by lane and road section | LOW                                       | 8L                      |
| Special events creating abnormal traffic conditions and their locations          | HIGH                                      | 5H 1M 2L                |
| Temporarily blocked or closed road locations                                     | HIGH                                      | 7H 1L                   |
| Locations with high density of pedestrians                                       | LOW                                       | 1H 2M 5L                |
| Locations with high density of cyclists or users of micro-<br>mobility devices   | LOW                                       | 1H 2M 5L                |
| Highway shoulder locations occupied by vehicles or debris                        | HIGH                                      | 5H 1M 2L                |
| Locations with dynamic traffic access changes                                    | HIGH                                      | 6H 1M 1L                |
| Remote human support                                                             | HIGH                                      | 4H 4L                   |

CEDR

Conférence Européenne des Directeurs des Routes Conference of European Directors of Roads



| Local condition / ODD attribute:<br>Environmental conditions                  | TM4CAD analysis of<br>overall priority level | ADS dev Survey<br>(n=8) |
|-------------------------------------------------------------------------------|----------------------------------------------|-------------------------|
| Wind speed range                                                              | MEDIUM                                       | 1H 4M 3L                |
| Visibility range with rain/snow/sleet/hail in visible light<br>spectrum       | HIGH                                         | 7H 1L                   |
| Visibility range with rain/snow/sleet/hail in lidar<br>infrared spectrum      | HIGH                                         | 6H 2L                   |
| Rainfall rate in mm/hr                                                        | HIGH                                         | 6H 2L                   |
| Snowfall rate in qualitative ranges                                           | нідн                                         | 7H 1L                   |
| Visibility range with other particulate obscurants in visible light spectrum  | нідн                                         | 7H 1L                   |
| Visibility range with other particulate obscurants in lidar infrared spectrum | HIGH                                         | 6H 2L                   |
| Predicted significant changes in key weather attributes                       | HIGH                                         | 7H 1L                   |
| Qualitative ambient lighting conditions                                       | LOW                                          | 8L                      |
| Quantitative ambient lighting conditions                                      | MEDIUM                                       | 5M 3L                   |



# 

The most

important

urgent?

and

The most important and urgent?

| Local condition / ODD attribute:<br>Environmental conditions    | TM4CAD analysis of<br>overall priority level | ADS dev Survey<br>(n=8) |
|-----------------------------------------------------------------|----------------------------------------------|-------------------------|
| Special challenging lighting conditions                         | MEDIUM                                       | 1H 4M 3L                |
| Electromagnetic interference                                    | HIGH                                         | 5H 3L                   |
| Wet pavement surface                                            | HIGH                                         | 4H 1M 3L                |
| Ice on pavement surface                                         | HIGH                                         | 6H 2L                   |
| Cold pavement surface (potential for ice if wet)                | HIGH                                         | 5H 3L                   |
| Road surface friction                                           | HIGH                                         | 4H 1M 3L                |
| Light to moderate snow/slush accumulation on surface            | HIGH                                         | 6H 2L                   |
| Heavy snow/slush accumulation on surface                        | HIGH                                         | 6H 2L                   |
| Light to moderate flooding (puddles) on surface                 | HIGH                                         | 5H 1M 2L                |
| Heavy flooding – potentially impassible to low-profile vehicles | HIGH                                         | 6H 2L                   |





The most important and urgent?

| Local condition / ODD attribute:<br>operational infrastructure                                      | TM4CAD analysis of overall priority level | ADS dev<br>Survey (n=8) |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------|
| Temporary static signs                                                                              | HIGH                                      | 7H 1L                   |
| Maintenance vehicles using portions of carriageway                                                  | HIGH                                      | 6H 2L                   |
| Work zones                                                                                          | HIGH                                      | 7H 1L                   |
| Incident recovery events (crash scenes, crime scenes, dropped loads, landslides, avalanches)        | HIGH                                      | 6H 2L                   |
| Availability of specific C-ITS information services                                                 | HIGH                                      | 6H 1M 1L                |
| Availability of real-time merging guidance or assistance at motorway interchanges or entrance ramps | HIGH                                      | 7H 1L                   |
| Real-time lane-specific speed limit information availability at specific locations.                 | HIGH                                      | 7H 1L                   |
| Obstacles or debris on road surface                                                                 | HIGH                                      | 6H 2L                   |
| Roadside objects that change their locations over time, such as parked vehicles or trash cans       | MEDIUM                                    | 5M 3L                   |
| Routing advisory information                                                                        | MEDIUM                                    | 5M 3L                   |
| Traffic rules and regulations in digital form, updated in real time                                 | нідн                                      | 6H 2L                   |





# Conclusions and further steps

Continue the dialogue?

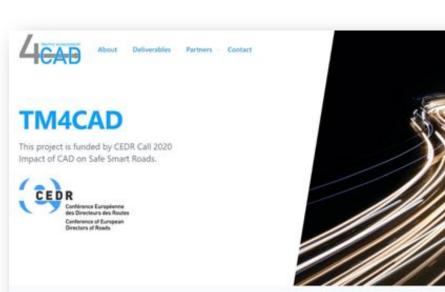
- Breakout session ARTS22 (18-21 July 2022, LA)
- Presentation ITS World Congress (18-21 September 2022, LA)
- Presentation SIP-adus (11-13 October, Kyoto)
- Session TRA (14-17 November, Lissabon)
- Workshops 4, 5, 6, 7

6/9/22

• Final event, March/April 2023, tbd



## Traffic Management for Connected and Automated Driving


#### TM4CAD

Tom Alkim, Jaap Vreeswijk

Mail: tom.alkim@maptm.nl, jaap.vreeswijk@maptm.nl

Project website:

https://tm4cad.project.cedr.eu/



#### **Traffic Management for Connected and Automated Driving**

In TM4CAD we explore the role of infrastructure systems across various infrastructure Support for Automated Driving (ISAD) levels in creating ODD awareness for CAD systems.

As a starting point we will propose various system architectures for distributed ODD attribute information and define acquisition principles of the information based on exchange between the architecture elements, ultimately to enable CAD systems to be aware of their ODD in real-time.

Moreover, TM4CAD will demonstrate the basic mechanisms of ODD management via two real-world use cases, which build on the premise of interaction between traffic management systems and CAD vehicles. This will provide NRAs insight in methods to inform CAD systems about the kinds of support they can provide for CAD

















# Adressing challenges towards the deployment of higher automation

Luisa Andreone, Stellantis-CRF, Enablers Leader Aria Etemad, Volkswagen, Coordinator

CEDR TM4CAD 3rd workshop 10 June 2022



# Hi-Drive

## **Designing Automation**

## PUSH TOWARDS HIGHER AUTOMATION.

- Robust and reliable automated driving
- Extended and defragmented ODDs
- Interoperability across countries and brands



**Project Facts** 

## €60 MILLION BUDGET

## €30 MILLION FUNDING

## 48 MONTHS DURATION starting in July 2021

40 PARTNERS among them OEMs, automotive suppliers, research institutes, associations, traffic engineering, deployment organisations and mobility clubs

14 COUNTRIES involved: Belgium, France, Finland, Germany, Greece, Hungary, Italy, Israel, Netherlands, Norway, Spain, Sweden, Switzerland, United Kingdom



Supported by the European Council for Automotive R&D This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006664



### **Hi Drive**

## Partners



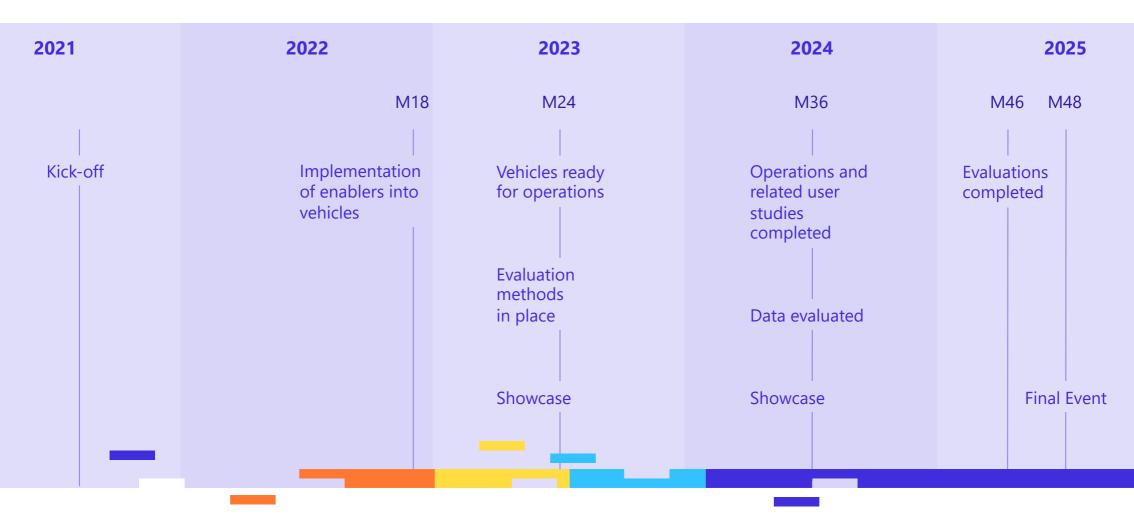




Phase 1



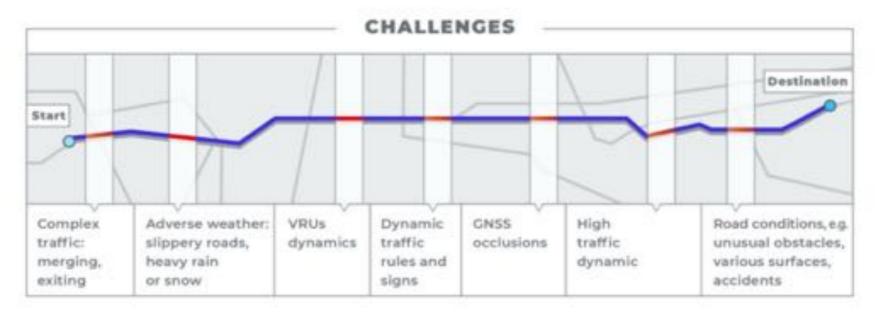
Phase 3


**Collaboration** Code of Practice for the Development of ADF and Road Testing Procedures

Phase 2

Motorway Chauffeur Urban Chauffeur Cross-border Scenarios Edge Cases




## Timeline





Technology Enablers for CAD vehicles to operate in defragmented ODDs. Extend and Defragment ODDs Enablers Cards and KPIs Connectivity & Digital Infrastructure High Precision Positioning Resilience to Cyber threats Machine Learning for ADs

## Hi-Drive Technology Enablers for defragmentation of Operational Design Domains



OPERATIONAL DESIGN DOMAIN

**Hi**·Drive

## Hi-Drive Technology Enablers beyond vehicles' sensing

### CONNECTIVITY

"THE SIXTH SENSE BEYOND SENSORS"

- DEFRAGMENT ODDS where vehicle sensors cannot sort out a driving context
- EXTEND ODDS where vehicle sensors cannot see
- ANTICIPATE ODDS EXIT/ENTRY with digital data from traffic infrastructure

### HIGH PRECISION POSITIONING

"POSITIONING SHALL ALWAYS BE AVAILABLE"

- HIGH PRECISION POSITIONING sub-meter absolute positioning
- LOCALIZATION SENSOR FUSION HD Maps & vehicle / infrastructure sensors

## Hi-Drive Technology Enablers: beyond vehicles' sensing

### **CYBERSECURITY OF V2X DATA**

"TRUST IS THE THUMB UP OR DOWN"

- THREAT ANALYSIS AND RISK ASSESSMENT for V2X data vulnerabilities
- CYBERSECURITY BY DESIGN RECOMMENDATIONS on V2X cyber-risks mitigation

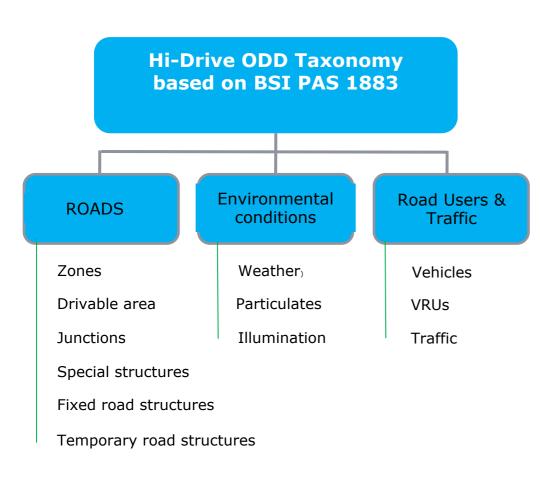
### **CONTEXT LEARNING**

"LEARNING FROM EXPERIENCE IS GROWTH"

- MACHINE LEARNING TOOLKIT semi-automatic annotation of road agents
- PERCEPTION OF ROAD AGENTS traffic scenario and road agents
- VEHICLE DECISION MAKING for manoeuvres and trajectory planning
- DRIVER MONITORING postures and distraction

## **Operational Design Domain – ODD**

**Hi**-Drive




SAE Levels

ODD - "Operating conditions under which a given driving automation system [...] is specifically designed to function [...] to environmental, geographical, and time-of-day restrictions, and/or the requisite presence or absence of certain traffic or roadway characteristics." \*

\*SAE J3016 (2021)

## Hi-Drive Operational Design Domains: work in progress Work in course in the Hi-Drive Task Force led by ICCS



From Automated Driving Functions (ADFs):

About ODD attributes:

- Which specific ODD attributes are needed by ADFs?
- At which level of granularity are the ODD attributes needed?
- At which level of road coverage are the ODD attributes needed?

## THANK YOU FOR YOUR KIND ATTENTION.

www.Hi-Drive.eu Twitter@\_HiDrive\_ LinkedInHi-Drive

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006664.



